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Abstract. The main focus of this paper is the numerical solution of the Boltzmann transport
equation for neutral particles through mixed material media in a spherically symmetric geometry.
Standard solution strategies, like the Discrete Ordinates Method (DOM), may lead to nonphysical
approximate solutions. In particular, a point source at the center of the sphere yields undesirable
ray effects. Posing the problem in spherical coordinates avoids ray effects and other non-physical
numerical artifacts in the simulation process, at the cost of coupling all angles in the PDE setting.
In addition, traditional finite element or finite difference techniques for spherical coordinates often
yield incorrect scalar flux at the center of the sphere, known as flux dip, and oscillations near steep
gradients.

In this paper, a least-squares finite element method with adaptive mesh refinement is used to ap-
proximate solutions to the non-scattering one-dimensional neutron transport equation in spherically
symmetric geometry. It is shown that the resulting numerical approximations avoid flux dip and
oscillations. The least-squares discretization yields a symmetric positive definite linear system which
shares many characteristics with systems obtained from Galerkin finite element discretization of to-
tally anisotropic elliptic PDEs. In general, standard Algebraic Multigrid (AMG) techniques fail to
scale on non-grid-aligned anisotropies. In this paper, a new variation of Smoothed Aggregation (SA)
is employed and shown to be essentially scalable. The effectiveness of the method is demonstrated
on several mixed-media model problems.

1. Introduction. The main focus of this paper is the numerical solution of the
Boltzmann transport equation for neutral particles in a spherically symmetric domain
with mixed media. A First-Order System Least-Squares (FOSLS) finite element dis-
cretization is developed and shown to be accurate and to avoid flux dip near the center
of the sphere and oscillations near steep fronts caused by material boundaries. The
least-squares functional provides a locally sharp and globally accurate a posteriori
error measure which is used in conjunction with an adaptive mesh strategy, ACE,
that is based on Accuracy per Computational cost [7, 5]. FOSLS discretization of the
non-scattering transport operator in spherically symmetric geometry yields a linear
system that resembles an anisotropic diffusion operator and is, therefore, amenable to
solution by a recently developed Smoothed Aggregation (SA) [25] algorithm specifi-
cally aimed at anisotropic diffusion problems [22]. In this context, the SA algorithm
is shown to converge independently of the number of refinement levels. This paper
will demonstrate that the FOSLS-ACE-SA approach provides an accurate and very
efficient solution algorithm.

A broader motivation for this work is the application of FOSLS-ACE-SA to more
general first-order hyperbolic conservation laws. In particular, numerical solution of
Boltzmann transport in more general geometry using the Discrete Ordinates Method
(DOM) and Diffusion Synthetic Acceleration (DSA) on irregular, isoparametric, or
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adaptively refined grids using the self-adjoint form of the transport operator involves
solving a large number of problems of a character similar to those examined in this
paper. Since SA algorithms are multilevel, they have potential for parallel scalability,
thus overcoming a drawback to the conventional strategy of transport sweeps.

The next two subsections provide background on Boltzmann transport for neutral
particles and provide broader motivation for this work.

1.1. Boltzmann Transport. The Boltzmann transport equation describes the
movement of neutral particles through material media. The primary quantity of
interest is the angular flux, ψ(x,Ω), which represents the flux of particles through
spatial location x, moving in direction Ω. In general Cartesian coordinates, the steady-
state, single-energy, isotropic transport equation can be written as

Ω · ∇ψ + σtψ =
σs
4π

∫
S
ψ dΩ + q, (x,Ω) ∈ D × S, (1.1)

ψ = g, x ∈ ∂D, n · Ω < 0, (1.2)

where D is the spatial domain and S is the unit sphere. The first term in (1.1)
represents the streaming of particles through the point x in the direction Ω, the
second term represents particles that are lost due to a collision with the media, the
third term represents particle rescattering, and q represents a particle source. The
coefficients, σt and σs, are the total and scattering cross-sections, respectively, and,
like the source term, q, may have spatial dependence. The function g defines inflow
conditions on the boundary of the domain. In the general case, a solution process for
the neutron transport equation involves discretization schemes for space and angle,
and a solver for resulting linear system of equations.

The use of the Discrete Ordinates Method (DOM) for angular discretization is
ubiquitous in the transport community. Here, a finite set of directions, {Ωj}Nj=1, are
chosen, usually quadrature points of the integral in the scattering operator, and (1.1)
is replaced by:

Ωj · ∇ψj(x) + σtψj(x) = σsφ(x) + qj(x), j = 1, . . . , N, (1.3)

φ(x) =
∑
j

ωjψj(x), (1.4)

where ωj are quadrature weights, φ(x) is the scalar flux, and ψj(x) = ψ(x,Ωj).
The primary advantage of such methods, coupled with a standard spatial dis-

cretization method (e.g. Corner Balance, Weighted-Diamond Differences, Discontin-
uous Galerkin, etc [1]), is the decoupling of the angles in the steady-state streaming
operator, the left-hand side in (1.3). A popular and effective solution approach, known
as Diffusion Synthetic Acceleration (DSA), involves solving (1.3) for each angle inde-
pendently, then updating the scalar flux with a diffusion equation [12, 16]. The DSA
algorithm can be summarized as follows: given φ`, set

(Ωj · ∇+ σtI)ψ
`+1/2
j = σsφ

` + q, j = 1, . . . , N, (1.5)

φ`+1/2 =
∑
j

ωjψ
`+1/2
j , (1.6)

(−∇ · 1

3σt
∇+ σaI)δ`+1/2 = σs(φ

`+1/2 − φ`), (1.7)

φ`+1 = φ`+1/2 + δ`+1/2, (1.8)
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where σa = σt − σs is the absorption cross-section.
The DSA algorithm requires the solution of (1.5), the so-called transport sweeps,

for every angle, Ωj , at every iteration. The traditional choice of spatial discretization
leads to a triangular or block-triangular linear systems that must be solved repeatedly
in each angle [1, 16]. Solution of a triangular linear systems is inherently serial which
has the potential to degrade performance on parallel architectures. A number of
very effective parallel schemes have been developed to alleviate this difficulty [3, 19],

yielding algorithms that scale with O(P
1
d ), where P is the number of processors and

d is the spatial dimension. Irregular grids, isoparametric grids, and adaptively refined
grids degrade the performance of these algorithms.

A recent focus on the self-adjoint form of the transport operator, which leads to a
least-squares finite element discretization of the sweep equation, (1.5), yields a linear
system that shares many similarities with a standard finite element discretization of
an anisotropic, second-order system [11]. The benefits of this approach is that it
produces a linear system of equations that is symmetric positive definite (SPD) and
has the potential to be solved efficiently in parallel by multilevel algorithms such as
SA [22]. The demonstration of such a scheme is one focus of this paper.

The main drawback of the FOSLS method in the context of neutron transport is
that the discretization is not locally conservative. However, the FOSLS solution con-
verges rapidly to the true solution (especially when coupled with adaptive refinement)
and, thus, satisfies approximate local conservation on a sufficiently refined mesh. The
results in this paper are in a different context, but demonstrate the accuracy and
efficiency of the FOSLS-ACE-SA approach

1.2. Transport in Spherically Symmetric Geometry. As stated above, this
paper is focused on Boltzmann transport in spherically symmetric geometry (see figure
(2.1)). In this setting, a drawback of the DOM method is that when a strong source
is placed at the sphere center, unphysical oscillations of the discrete solution are
observed far away from the source. These unphysical artifacts are called ray effects
and typically necessitate the use of a large number of discrete directions [16, 14, 15].

One solution to this difficulty is to formulate the transport problem in spherical
coordinates. This creates a first-order coupling of the unknowns in angle and elimi-
nates the ray effects (see equation (2.1)). However, since the angles do not decouple,
transport sweeps do not separate, and one must solve for all angles of the solution
simultaneously. The focus of this paper will be on the non-scattering operator, the
left side of (2.1), denoted by T . This is equivalent to solving all the sweeps in (1.5).
The diffusion solve, equivalent to (1.7), becomes an easily solved, one-dimensional
equation.

The characteristic curves for this first-order hyperbolic operator, T , curve through
the domain (see figure (3.1)). Applying a least-squares finite element discretization
to this operator again yields linear systems that are similar to those that would arise
from a Galerkin discretization of anisotropic diffusion. Now, however, the anisotropy
curves through the domain along the characteristic curves.

The aim of this paper is to demonstrate the potential effectiveness of the FOSLS-
ACE-SA approach on the non-scattering part of the neutron transport equation in
spherical geometry. It will be demonstrated that the discretization, coupled with
adaptive refinement, provides a faithful representation of the true solution while avoid-
ing problematic numerical artifacts. It will also be demonstrated that the resulting
linear systems can be solved with optimal algorithmic complexity by a recently de-
veloped algebraic algebraic multilevel method, a modification of SA. While a parallel
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implementation of the solver is beyond the scope of this paper, the reader is directed
towards literature discussing the parallelization of such methods [24].

We remark that this problem is an example of a broader class of problems, for ex-
ample, first-order hyperbolic conservation laws. FOSLS discretization of such systems
yields similar discrete linear systems and FOSLS-ACE-SA provides a viable solution
technique [8, 9]. In particular, consider transport sweeps (1.5) in cartesian coordi-
nates, but implemented on an irregular or isoparametric grid. Straight characteristics
on such a grid yield discrete systems that resemble curved characteristics on a regular
grid. These grids, along with adaptively refined or irregular, triangulated grids, are
examples for which parallel sweeps become problematic. The approach here can be
can be applied on such grids and yield the potential for both optimal algorithmic
complexity and scalable parallel implementation.

The remainder of the paper is organized as follows. Section 2 of the paper de-
scribes the problem formulation in spherical geometry and some numerical pitfalls
that are sometimes encountered in the solution process. Section 3 is concerned with
the FOSLS methodology, finite element error bounds, and a discussion of the charac-
ter of the linear system that results. In Section 4, exact solutions of a class of mixed
media problems in spherical geometry will be presented. The numerical tests in Sec-
tion 6 will address problems from this class. Section 5 contains a brief description of
the recently developed algebraic multigrid method algorithm, a modification of SA,
that will be used as the linear solver. In Section 6, FOSLS-ACE-SA approach will be
applied to three test problems and the results will be discussed. Section 7 contains
conclusions and future directions.

2. Problem Formulation. Consider the case of a spherical domain where the
material properties of the domain and the source are radially symmetric. In this case,
the angular flux is the same along any radial line in the spatial domain that passes
through the origin (c.f. figure 2.1). In this case, the spatial dependence of the problem
is reduced to a single dimension and the streaming angle, Ω, is reduced to the unit
circle. Denote the distance from the sphere center by ρ and let µ be the cosine of the
streaming angle, θ.

Fig. 2.1: Spherical Domain

On the domain, R = [0, 1] × [−1, 1] , the 1D, spherically symmetric transport
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equation in conservative form can be written as

µ

ρ2
∂

∂ρ

(
ρ2ψ

)
+

∂

∂µ

[(
1− µ2

)
ψ

ρ

]
+ σtψ =

σs
2

∫ 1

−1
ψdµ+ q, (2.1)

where the source term and cross-section are taken to be nonnegative but possibly
discontinuous. In the remainder of the paper, we consider the non-scattering operator,
omitting the scattering integral, and focus on the equation

Tψ =
µ

ρ2
∂

∂ρ

(
ρ2ψ

)
+

∂

∂µ

[(
1− µ2

)
ψ

ρ

]
+ σψ = q. (2.2)

Note that the total cross-section, σt, is now denoted simply as σ throughout the
remainder of the paper. Vacuum boundary conditions are imposed on the inflow and
reflective boundary conditions at the sphere’s center:

ψ (1, µ) = 0, µ ≤ 0, (2.3)

ψ (0, µ) = ψ (0,−µ) , µ ≥ 0. (2.4)

Equation (2.2) can be considered a first-order equation in two dimensions and
can be discretized using a variety of techniques [16]. Naive discretization techniques
often produce a number of numerical artifacts. The first is the so-called flux dip that
presents as a severe underestimation in the numerical approximation of the scalar flux
near the sphere center, where the scalar flux is defined by

φ(ρ) =
1

2

∫ 1

−1
ψ(ρ, µ) dµ. (2.5)

The second common numerical artifact is the appearance of non-physical oscil-
lations of the scalar flux near material interfaces. Cartoons of these phenomena are
depicted in figures 2.2 a) and b).

Fig. 2.2: Common Numerical Artifacts
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3. Least Squares Discretization. In nonconservative form and scaled by ρ,
equation (2.2) can be written as

ρTψ = ρµ
∂ψ

∂ρ
+
(
1− µ2

) ∂ψ
∂µ

+ ρσψ = ρq (3.1)

We recast the (3.1) as a minimization of the residual in the L2 norm. That is, find
ψ∗ such that

ψ∗ = arg min
ψ∈V
G (ψ; q) := arg min

ψ∈V
‖ρ(Tψ − q)‖22, (3.2)

where

V = {ψ : ρψ ∈ L2(R) : ρTψ ∈ L2(R), ψ satisfies (2.3) , (2.4)}. (3.3)

For convenience we define the vector b =
[
ρµ,

(
1− µ2

)]T
and rewrite the model

problem in simplified form as

ρTψ = b · ∇ψ + ρσψ = ρq, (3.4)

where the gradient vector is defined with respect to ρ and µ in the usual way as
∇ = [∂/∂ρ, ∂/∂µ]

T
.

Continuity and coercivity of the functional G(ψ; 0) can be established by relating
back to the original geometry, D × S, as described in (1.1) and (1.2), where D is
now a sphere of radius 1.0. Given ψ(ρ, µ) ∈ V, consider the corresponding spherically
symmetric function, Ψ(x,Ω) ∈ L2(D × S2). It is easy to show that

‖Ψ‖2L2(D×S) = 8π2‖ρψ‖2L2(R). (3.5)

Now, let T be the streaming operator on the left side of (1.1). A similar calculation
yields

‖T Ψ‖2L2(D×S) = 8π2‖ρTψ‖2L2(R). (3.6)

Thus, equation (3.1) posed on R inherits the properties of the more general equation
(1.1) posed in D × S. Using (3.5), (3.6), together with results from [8] and [18], one
can establish the Poincare inequality,

‖ρψ‖ ≤ C‖ρTψ‖, ∀ψ ∈ V. (3.7)

(We have reverted to omitting the subscript on the norm, which is assumed to be the
L2-norm on R.) Since D is a sphere of radius 1.0, we have C = 1.0,

Continuity and coercivity of the functional, G(ψ, 0), also follows from the same
arguments; there exist positive constants, c and C, such that, for every ψ ∈ V,

c
(
‖ρψ‖22 + ‖b · ∇ψ‖22

)
≤ G(ψ; 0) ≤ C

(
‖ρψ‖22 + ‖b · ∇ψ‖22

)
. (3.8)

Define the norm on V to be

‖ψ‖V :=
(
‖ρψ‖22 + ‖b · ∇ψ‖22

)1/2
. (3.9)

Equations (3.7) can be used to show that V is a Hilbert space under the V-norm.
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Minimization (3.2) is equivalent to the following weak form:

find ψ∗ ∈ V s.t. 〈ρTψ, ρTv〉 = 〈ρq, ρTv〉 , ∀v ∈ V. (3.10)

Equation (3.8) guarantees that (3.10) has a unique solution for every q such that
ρq ∈ L2(R).

Next, (3.10) is restricted to a finite dimensional subspace, Vh ⊂ V. Let ξhk , for
k = 1 . . . N , be a basis for Vh. Then, ψh can be found by solving the familiar linear
system,

Au = f , (3.11)

where

(A)ij =
〈
ρTξhj , ρTξ

h
i

〉
and fi =

〈
ρq, ρTξhi

〉
. (3.12)

From this definition it is easy to see that the stiffness matrix, A, is symmetric positive
definite.

To get an idea of the likelihood of the success of an AMG method on the resulting
linear system it is helpful to look at the leading term in the formal normal of the
formulation; that is, consider (ρT )∗(ρT ). In the present case, the leading term of
(ρT )∗(ρT ) looks like an totally anisotropic diffusion term of the form

−∇ ·
[
b bT

]
∇. (3.13)

The lines of strong anisotropy are the characteristic curves of the operator b ·∇ψ. The
characteristics are everywhere tangent to the vector b and are given by the equation

ρ =

√
µ2
0 − 1

µ2 − 1
, (3.14)

where µ0 parametrizes the inflow boundary, {(1, µ) : −1 ≤ µ ≤ 0}. Several of
these curves are plotted in figure 3.1. It is clear from the picture that the anisotropy
varies significantly over the domain and, on an orthogonal grid, are generally non-
grid-aligned. In the case when the anisotropy is grid-aligned, a successful AMG
method aggregates (or semicoarsens) unknowns in the direction of strong anisotropy.
It has been shown in a number of papers that standard AMG solvers perform poorly
when the anisotropy is non-grid-aligned (c.f. [6, 22]). One goal of this paper is to
demonstrate an AMG algorithm, in this case an SA algorithm, that achieves optimal
complexity on such systems. (See section 5).

In the case of smooth solutions, finite element convergence bounds for the FOSLS
discretization can be established in the standard fashion. Assume that the finite
dimensional subspace, Vh, involves piecewise polynomials of degree p and admits
interpolations operator, Ih, with the approximation property

‖ψ − Ihψ‖k ≤ Ck,sh1+s−k‖ψ‖1+s, (3.15)

for 0 ≤ k ≤ s ≤ p. Then, the FOSLS solution satisfies the bound

‖ρT (ψ − ψh)‖ ≤ ‖ρT (ψ − Ihψ)‖ ≤ C‖ψ − Ihψ‖1 ≤ Chs‖ψ‖1+s, (3.16)
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Fig. 3.1: Characteristic Curves

for 0 < s ≤ p, where C is a generic constant.
Solutions to hyperbolic equations of the form (3.1) can be discontinuous along

characteristics in the presence of discontinuous σ and q. In test problems 2 and 3
below, the solutions are C0, but are only in Hα for α < 1. For the grid-aligned case,
it can be shown that

‖ρT (ψ − Ihψ)‖ ≤ Chα‖ψ‖α, (3.17)

for α ≤ p, where C > 0 is a grid-independent constant. The exact bound for the
non-grid-aligned case remains an open question. However, the theoretical limit for
the grid-aligned case and other results offer some insight. In [23], an interpolation
operator is established that satisfies the bound

‖ρ(ψ − Ihψ)‖ ≤ ‖ψ − Ihψ‖ ≤ Chs‖ψ‖s, (3.18)

for 0 < s ≤ p. The Poincare inequality (3.7) yields

‖ρ(ψ − Ihψ)‖ ≤ C‖ρT (ψ − Ihψ)‖. (3.19)

Thus, the functional cannot converge any faster than the L2 norm of the error.
These are upper bounds on the error and specific problems may converge more

quickly. That is the case in the test problems in section 6. It will be shown below that
the non-smooth behavior is confined to the material interface in test 2, and along a
special characteristic in test 3. For this reason, adaptive refinement is used. In this
context, a more useful measure of the accuracy obtained per computation cost is to
consider the error as a function of the number of degrees of freedom used. Since the
SA algorithm has optimal complexity, the computational cost is directly related to
the number of degrees of freedom.

4. Mixed Media Solution. The mixed-media test case in which the source, q,
and cross-section, σ, are piecewise-constant with discontinuity at some point, ρmid, in
the domain is examined in the numerical tests in section 6. In the spherical setting,
this corresponds to an inner sphere and outer shell with distinct material and source
properties. For example, one might have

σ(ρ) =

{
σ1 for 0 ≤ ρ ≤ ρmid
σ2 for ρmid ≤ ρ ≤ 1

, q(ρ) =

{
q1 for 0 ≤ ρ ≤ ρmid
q2 for ρmid ≤ ρ ≤ 1

. (4.1)
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The exact solution to this problem can be written explicitly for three different portions
of the domain as follows:

For 0 ≤ ρ ≤ ρmid ,

ψ (ρ, µ) =
q1
σ1

(
1− e−σ1(ρµ+s)

)
+
q2
σ2
e(σ2−σ1)s−σ1ρµ

(
e−σ2s − e−σ2t

)
.

For ρmid ≤ ρ ≤ 1 and −1 ≤ µ ≤
√

1− (ρmid/ρ)
2

,

ψ (ρ, µ) =
q2
σ2

(
1− e−σ2(ρµ+t)

)
.

For ρmid ≤ ρ ≤ 1 and

√
1− (ρmid/ρ)

2 ≤ µ ≤ 1 ,

ψ (ρ, µ) =
q1
σ1
eσ2s−σ2ρµ

(
1− e−2σ1s

)
+
q2
σ2
e2(σ2−σ1)s−σ2ρµ

(
e−σ2s − e−σ2t

)
+
q2
σ2

(
1− e−σ2(ρµ−s)

)
,

where the distinct portions of the domain are separated by the curves

s =
√
ρ2mid − ρ2 (1− µ2) and t =

√
1− ρ2 (1− µ2).

While the exact solution for this problem with discontinuous cross-section and
source is itself continuous, there are two areas in the domain which exhibit sharp
changes in the solution due to discontinuities in the first derivative. These sharp
changes occur along the material discontinuity, ρ = ρmid, and also along the charac-
teristic tangent to the material discontinuity (c.f. Figure 4.1).

Fig. 4.1: Osculating Characteristic

At the point of osculation, (ρmid, 0), the behavior of ψ in the ρ direction is de-
termined by the degree of osculation. In this case, as ρ→ ρmid from below, a square
root behavior leads to an unbounded derivative,

dψ

dρ
(ρmid, 0) ' (ρ− ρmid)−1/2. (4.2)

In the absence of absorption (σ = 0), this behavior is carried along the characteristic
(to the left in figure 4.1) without modification. With absorption, the behavior is
attenuated, depending on the strength of the absorption. In test 3, σ = 0.5 in the
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outer shell and the behavior persists until the outflow boundary (see figure 6.6a). In
test 2, σ = 100 in the outer shell and the behavior disappears quickly (see figure 6.3a).
In either case, the behavior along the osculating characteristic implies ψ ∈ Hα for
α < 1.0. The numerical results below demonstrate that finite element convergence is
much faster for test 2 than for test 3.

In order to accurately capture these sharp changes in the solution, it is necessary
to have a very fine grid resolution along the material interface in test 2 and along the
osculating characteristic in test 3. However, away from these two curves the solution
is relatively smooth and does not require fine resolution. A natural way to capture
this behavior without wasting significant computational effort is to use adaptive mesh
refinement. Fortunately, accurate AMR is relatively easy to obtain in the FOSLS
framework. A local version of the upper bound (continuity) in (3.8) can be used to
show that the local FOSLS functional,

ετ = ‖ρTψ − ρq‖τ ,

provides a locally sharp estimation of the error in element τ . The lower bound (3.8)
shows that the functional is also a globally reliable error estimator. An efficient
adaptive refinement strategy based on the FOSLS functional can be obtained by
choosing to refine elements with large local FOSLS functional so as to maximize the
accuracy obtained per increase in computational cost. This refinement strategy is
called ACE and presented in detail in [5, 7].

5. Smoothed Aggregation Algebraic Multigrid. AMG methods are a pop-
ular and effective approach for solving the sparse linear systems that arise from dis-
cretizing partial differential equations because they are scalable or optimal and solve
a linear system with n degrees of freedom with O(n) work. However while AMG was
designed for elliptic problems, we noted in Section 3 that the case of non-grid-aligned
anisotropic diffusion is not adequately addressed by existing AMG methods and the
matrices here resemble such highly non-grid-aligned operators. Therefore, we apply
the recently developed SA solver described in [22], which was shown to be scalable
for a range of model non-grid-aligned anisotropic diffusion problems.

We first give an overview of how multigrid solves the linear system Ax = b, where
x, b ∈ Rn, A ∈ Rn×n and A is symmetric and positive definite (SPD). Multigrid
consists of two main parts, relaxation and the coarse grid correction. The coarse grid
correction uses interpolation operators (often called prolongation and restriction) to
transfer vectors and matrices between the fine and coarse “grids”, denoted by Rn and
the lower dimensional (coarse) vector space Rnc . The prolongator P : Rnc → Rn and
we make the common choice of restriction equal PT .

Multigrid is optimal when relaxation and coarse grid correction are complemen-
tary. For a classic model diffusion problem, relaxation is simple, like Gauss-Seidel,
and effectively reduces high frequency (high energy) error. The remaining low fre-
quency error is then accurately captured by P and moved to the coarse grid where
it is eliminated. In the general setting, this low frequency error is referred to as “al-
gebraically smooth” and must be captured accurately by interpolation. The result is
that all error components are uniformly damped with an O(n) cost. A single two-grid



11

iteration is defined in (5.1), where x is some initial guess.

Relax on Ax = b (5.1a)

Correct x← x+ P (PTAP )−1PT (b−Ax) (5.1b)

Relax on Ax = b (5.1c)

Return x (5.1d)

For optimality, (5.1) is applied recursively to the correction step to solve PTAPxc =
PT (b − Ax), until the coarse grid problem is of trivial size. Multigrid V-cycles cor-
respond to only one recursive call at the correction step, while F-cycles implement a
V-cycle iteration at each coarse grid, i.e., coarse grids are visited more frequently, but
still in a scalable way. An F(k,m)-cycle refers to k relaxation sweeps in (5.1a) and m
relaxation sweeps in (5.1c).

AMG methods automatically construct the hierarchy and associated coarse level
matrices PTAP during the so-called setup phase. The solve phase refers to (5.1). In
order to assess optimality of our approach, we measure computational effort of both
phases using work units, which are equivalent to one matrix-vector product with the
finest level matrix. When the work units required to solve a problem does not change
regardless of problem size, we can say that the method is O(n) or scalable.

The strategy described in [22] examines the three major parts to a SA method
for the case of model rotated anisotropic diffusion problems and discerns that exist-
ing coarsening strategies1 and relaxation methods are sufficient for scalable perfor-
mance, but that existing interpolation methods are not. To augment P , classical SA
is modified to accommodate much wider interpolation stencils where the weights are
determined by the energy-minimization method from [21]. Classical SA essentially
does one energy-minimizing step (with weighted-Jacobi and a narrow interpolation
stencil) to find a low-energy, complementary interpolation operator. Here, many
energy-minimization steps and a wider stencil are used to find a complementary in-
terpolation operator. The result is a more robust method that has a higher setup
cost, but a lower overall time to solution.

As described in [22], the coarsening strategy relies on the advanced strength mea-
sure developed in [20]. Coarsening uses strength to determine the coupling between
degrees of freedom, and decide whether one degree of freedom can serve as a good
representation on the coarse level for a group of degrees of freedom on the fine level.

The method from [20] extracts strength information from locally smoothed δ-
functions. Here, 4 local Jacobi relaxation sweeps are used. The strength values
reflect how accurately algebraically smooth error can be approximated between de-
grees of freedom. As such, the strength drop-tolerances are all greater than 1.0 (as
opposed to classical strength drop-tolerances which are between 0.0 and 1.0). Here,
a drop-tolerance of 8.0 is used, which indicates that all entries within a factor of 8
of the strongest (i.e., smallest) connection are considered strong. See [20] for more
detail. The energy minimization parameters use a wide interpolation stencil based
on distance-six strength-of-connection information (corresponding to k = 6 in the
algorithm from [21]) and a total of 15 energy-minimization steps.

The notable modifications to the solver from [22] used here are as follows. Di-
agonally dominant rows are not coarsened because relaxation alone is sufficient to
reduce the error. This is important for efficiency when σ is large. Additionally, the

1The coarsening strategy decides which degrees of freedom should exist on the next coarser level
and form Rnc
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near nullspace modes used to help construct interpolation include the linears and the
constant, as opposed to only the constant, which was used in [22]. The addition of
this extra algebraically smooth information was found to be important to the solver’s
performance. These near nullspace modes are commonly used by multigrid as input
and serve as constraints on interpolation as modes that must be interpolated well.
These modes are usually determined by the dominant differential part of the weak
form of the governing PDE, which is also the case here.

While the current implementation of the method from [22] is in serial, paralleliza-
tion is not a serious issue. The algorithm relies on existing linear algebra operations
already present in most parallel multigrid packages, i.e., sparse matrix-matrix multi-
plication and LAPACK routines. The main algorithmic substitution required would
be using a parallel relaxation method, such as hybrid Gauss-Seidel.

Last, we note that while the method from [22] addressed AMG scalability for
difficult model problems, the matrices here present additional challenges known to
create issues for AMG, most importantly AMR and coefficient jumps. So, we do not
expect performance to be as perfectly scalable as for the model problems tested in
[22].

6. Numerical Results. Numerical experiments were carried out on three test
problems of increasing difficulty. In all cases, we take (ρ, µ) ∈ [0, 1] × [−1, 1]. They
are

Test 1: σ = 10−6, q = 1, for 0 ≤ ρ ≤ 1,

Test 2: σ(ρ) =

{
10−8 for 0 ≤ ρ ≤ ρmid
100 for ρmid ≤ ρ ≤ 1

, q(ρ) =

{
1 for 0 ≤ ρ ≤ ρmid
0 for ρmid ≤ ρ ≤ 1

,

Test 3: σ(ρ) =

{
1.0 for 0 ≤ ρ ≤ ρmid
0.5 for ρmid ≤ ρ ≤ 1

, q(ρ) =

{
4.0 for 0 ≤ ρ ≤ ρmid
1.0 for ρmid ≤ ρ ≤ 1

,

where the material jump in Tests 2 and 3 occurs at ρmid = 0.4.
Test 1 is a simple, single-media problem with constant cross-section and source

throughout the domain. Tests 2 and 3 are mixed media problems corresponding to
concentric spheres with different material properties within. Test 2 represents a void
surrounded by a optically thick shell with a unit source only within the void. Test 3
corresponds to a moderately thick shell surrounding a slightly thicker center.

For the three test problems we will measure the suitability of the FOSLS dis-
cretization is measured by considering the convergence of the discretization, the per-
formance of the SA, preconditioned Conjugate Gradient solver on the associated linear
system, and the character of the scalar flux φ compared to the known exact solution.

In the mixed-media case we are particularly interested in seeing that the scalar
flux avoids oscillations around the material jump and flux dip at the center of the
sphere. The convergence of the discretization is measured both in the least-squares
functional,

εF = ‖Tψh − ρq‖2,

and in the weighted L2 norm of the error with the known solution,

ε2 = ‖ρ
(
ψh − Ihψ

)
‖2,
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where ψI is the exact solution evaluated at the mesh grid points. Quadratic finite
elements are used in each test along with uniform mesh refinement and adaptive mesh
refinement where indicated.

Test 1: Figures 6.1a and 6.1b show the approximate angular and scalar flux,
respectively. Figures 6.2a and 6.2b show the convergence of the approximate solution
in the functional norm and L2-norm, respectively. Note that in the single-media case
the method converged very quickly with just uniform refinement with orders O

(
h0.75

)
and O

(
h1.25

)
for the functional and the L2-norm, respectively.

(a) Angular Flux
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Fig. 6.1: Test 1 - Solutions
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(a) Functional Convergence
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(b) L2 Convergence

Fig. 6.2: Test 1 - Finite Element Convergence

Test 2: Figure 6.3a shows the approximate angular flux. Note the sharp change
of slope along the material interface as the characteristics leave the inner sphere. The
large absorption results in a rapid decrease toward the outflow boundary. Figure



14 LSFEs for Neutron Transport in Spherical Geometry

6.3b shows the approximate scalar flux computed using adaptive mesh refinement
compared to the exact solution. Note the lack of flux dip at the sphere center and
unphysical oscillations near the material interface.

(a) Angular Flux
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Fig. 6.3: Test 2 - Solutions

Fig. 6.4: Test 2 - Refined Mesh

Figure 6.4 shows the adaptively refined grid on the finest level. Notice the concen-
tration of elements along the material interface, where the slope changes dramatically.
The finite element space is constructed to have element boundaries along this inter-
face, mitigating some of the difficulty of approximating the solution in this region.

Figures 6.5a and 6.5b show the convergence of the method to the true solution
in the functional norm and L2-norm, respectively. Convergence results are shown for
both uniform and adaptive mesh refinement. In each measure it is clear that adaptive
mesh refinement can be extremely beneficial in terms of accuracy per computational
cost, with approximately 2% of the total degrees of freedom required with the adap-
tively refined mesh to achieve the same accuracy as on the uniform mesh. This is
because it is only necessary to refine elements along the material interface.
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(b) L2 Convergence

Fig. 6.5: Test 2 - Finite Element Convergence

Test 3: Figure 6.6a shows the approximate angular flux. Note that the square
root behavior is carried along the osculating characteristic until the outflow boundary.
Figures 6.6b shows the approximate scalar flux for an adaptively refined mesh as well
as convergence results for both uniform and adaptively refined meshes. Again note
the lack of presentation of the flux dip and spurious oscillations near the material
interface.

Figure 6.7 shows the adaptively refined mesh. Note the concentration of elements
along the osculating characteristic. The mesh interface is not so highly refined because
the finite element space is chosen to have element boundaries along the interface and
the change in absorption, thus change in slope, is not as dramatic as in the Test 3
Figures.

Figures 6.8a and 6.8b show the convergence of the method to the true solution
in the functional norm and L2-norm, respectively. Convergence results are shown for
both uniform and adaptive mesh refinement. Again, it is clear that adaptive mesh
refinement can be extremely beneficial in terms of accuracy per computational cost,
with approximately 2% of the total degrees of freedom required with the adaptively
refined mesh to achieve the same accuracy as on the uniform mesh. This is because it
is only necessary to refine elements along the osculating characteristic. Convergence
for this test is slower than for Test 2 because of the square root behavior of the solution
along a curving characteristic.

Smoothed Aggregation Results. In this section, we report performance re-
sults for the SA method discussed in Section 5. F(2,2)-cycles are used to precondition
CG to within a relative residual tolerance of 10−8. The relaxation scheme is symmet-
ric Gauss-Seidel, i.e. a forward and then a backward sweep in both (5.1a) and (5.1c).
F-cycles are chosen over V-cycles because they offer more scalable work estimates for
the solver.

We report the iteration count, average convergence rate over all iterations (γ),
operator complexity (Op. Comp.), the number of degrees of freedom to the nearest
thousand (ndof (K)), the cost of setup phase in work units (WU), the total cost of the
solve phase in work units, and the solve phase WU per digit of accuracy (WU/digit).
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Fig. 6.6: Test 3 - Solutions

Fig. 6.7: Test 3 - Refined Mesh

Operator complexity represents the total number of nonzeros in the hierarchy divided
by the fine-grid number of nonzeros and is a relative measure of the storage cost of
the method. The setup phase is measured in total WU, where all the operations, such
as the sparse matrix-matrix multiplications during the energy minimization process
that computes P , are measured. The solve phase is also measured in WU, showing
both the total WU required to solve for 8 digits of accuracy and for the WU per digit
of accuracy. The latter is the amount of work required to reduce the residual by one
order of magnitude. This quantity is computed with c/| log10(γ)|, where c is the cycle
complexity. The cycle complexity c is the cost in floating-point operations (relative to
one fine grid matrix-vector multiply) to apply one F-cycle. This quantity is computed
by weighting the number of nonzeros in the matrix at each multigrid level by the
number of times a relaxation sweep is done at that level during one F-cycle. This
total amount is then normalized by the number of nonzeros present in the original
fine grid matrix to obtain c. The setup WU are shown to better understand the cost
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Fig. 6.8: Test 3 - Finite Element Convergence

of the nonstandard setup phase by allowing a comparison to a standard F-cycle solve
phase with a moderate operator complexity. In other words, the solve phase work is
typical for an efficient multigrid scheme and is a useful yardstick.

Table 6.1 depicts the results for a sequence of uniformly refined grids for Tests 2
and 3. The results for both problems show a slow growth in iterations and in WU
required to solve the problem. Overall, the approach is significantly more scalable than
classical SA, and more efficient at large grid sizes. For instance, consider a classical SA
method, using the same F(2,2) cycle and sophisticated strength-of-connection method
[20], but with standard filtered Jacobi prolongation smoothing. Here, the iterations
for the last three Test 3 grids are 82, 125 and 194 leading to total solve phase WU of
493, 740 and 1144. The setup is much cheaper, with 82 WU required for each of the
last three Test 3 grids. Whereas for the chosen approach, the WU required to solve
the problem to 8 digits of accuracy grows slowly each uniform grid refinement. The
corresponding iterations for the last three Test 2 grids are 101, 163 and 249, leading
to even less scalable total solve phase WU of 586, 950 and 1457. The setup cost is
again 82 WU for each of the last three Test 2 grids. Thus, the chosen approach is
even more efficient relative to classic SA for Test 2. For both problems as the problem
size increases, the chosen approach eventually becomes more efficient by costing less
total WU.

Last, we examine the solver for a sequence of adaptively refined grids for Tests
2 and 3 in Tables 6.2 and 6.3, respectively. The grid numbering reflects the number
of adaptive mesh refinements from an initial uniform mesh. The results for Test 2
show nearly scalable behavior, while Test 3 again exhibits a slow growth in iterations
2. It should be noted that these matrices based on AMR are extremely difficult for
classical multigrid methods. For instance when considering the same classical SA
method as above, the iterations for the last three adaptive Test 3 grids are 482, 871

2This growth in iterations can be slowed by increasing the setup phase WU. If extremely wide
interpolation stencils are used, leading to operator complexities around 3.25, then the iteration
counts for the last three adaptive Test 3 grids are 19, 23 and 25. However, the setup phase now
costs approximately 4,250 WU. Overall, care was taken to choose solver parameters that balance the
setup and solve phase costs.
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Test 2 Test 3
Grid 1 2 3 4 5 1 2 3 4 5

ndof (K) 13 51 206 821 3,281 3 13 51 206 821
Iterations 30 28 37 42 38 26 30 28 32 34

γ 0.54 0.51 0.60 0.64 0.61 0.49 0.53 0.51 0.56 0.58
Op. Comp. 1.78 1.80 1.59 1.55 1.55 1.78 1.77 1.67 1.60 1.57

Setup WU 1039 1222 799 771 775 804 878 849 810 801
Solve WU 314 308 340 370 335 241 315 270 301 310

Solve WU
digit

39 39 43 46 42 30 40 34 38 39

Table 6.1: SA results, uniform refinement, Tests 2 and 3

and 1501, leading to total solve phase WU of 2,964, 5,334 and 9,154. The setup is
much cheaper, with 84 WU required for each of the last three adaptive Test 3 grids.
The corresponding numbers for the last three adaptive Test 2 grids are 165, 251, and
442 iterations, leading to total solve phase WU of 988, 1492 and 2649. The setup
is again 84 WU for each of the last three adaptive Test 2 grids. Comparing these
numbers to the chosen approach, where the overall WU’s required is much smaller
and grows slowly, it is clear that we have made an appropriate choice for solving these
problems.

Grid 2 3 4 5 6 7 8 9 10 11

ndof (K) 1 6 19 29 43 64 124 300 881 2,524
Iterations 14 25 28 27 31 33 35 36 36 41

γ 0.26 0.47 0.51 0.50 0.55 0.57 0.59 0.60 0.59 0.64
Op. Comp. 1.52 1.78 1.79 1.83 1.85 1.83 1.87 1.86 1.83 1.76

Setup WU 285 700 872 948 996 1041 1,205 1,293 1,305 1,183
Solve WU 63 229 298 299 353 375 422 444 424 464

Solve WU
digit

8 29 37 37 44 47 53 56 53 58

Table 6.2: SA results, adaptive refinement, Test 2.

7. Conclusion We have demonstrated that the FOSLS discretization coupled
with adaptive mesh refinement provides an accurate discrete approximation of the
spherically symmetric 1D transport equation in spherical coordinates. The method
has good convergence properties and avoids troublesome unphysical numerical arti-
facts such as flux dip at the sphere center and oscillations near the material interface.
We have also demonstrated the resulting linear system can be solved scalably using
an algebraic multigrid method.

Future work will involve extending the FOSLS discretization methodology to
more difficult problems related to neutron transport. This includes problems where
discretization in spherical coordinates is advantageous but the domain, source, and
material coefficients are not necessarily spherically symmetric. The method should
also prove useful for problems involving general hyperbolic conservation laws. Future
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Grid 2 3 4 5 6 7 8 9 10

ndof (K) 1 2 6 15 43 127 377 1,108 3,261
Iterations 22 24 26 25 28 30 36 40 53

γ 0.43 0.45 0.48 0.47 0.51 0.54 0.59 0.63 0.70
Op. Comp. 1.65 1.83 1.90 1.91 1.83 1.79 1.73 1.68 1.65

Setup WU 385 874 930 1053 1034 1025 951 899 851
Solve WU 100 233 254 298 314 337 380 407 523

Solve WU
digit

13 29 32 37 39 42 48 51 65

Table 6.3: SA results, adaptive refinement, Test 3.

work will also involve improving the performance and efficiency of the smoothed ag-
gregation solver. Since the nature of the anisotropy in the resulting linear system is
entirely defined by the geometry of the domain, it may be beneficial to define aggre-
gation based on geometric data instead of (or in addition to) the matrix coefficients
as is typically done in standard smoothed aggregation multigrid.

REFERENCES

[1] M. L. Adams and E. W. Lewis, Fast Iterative Methods for Discrete-Ordinate Particle Transport
Calculations, Progress in Nuclear Energy, 40(1), 2002, pp. 3-159.

[2] T. Austin, and T. Manteuffel, A Least-Squares Finite-Element Method for the Linear Boltz-
mann Equation with Anisotropic Scattering, SIAM J. Numer. Anal., 44(2), (2006), pp.
540-560.

[3] T. S. Bailey and R. D. Falgout, Analysis of massively parallel discrete-ordinates transport
sweep algorithms with collisions, Proc. Int. Conf. on Math., Comp. Phys. and Reactor Phys.,
Saratoga Springs, NY, 2009.

[4] M. Brezina and R. Falgout and S. MacLachlan and T. Manteuffel and S. McCormick
and J. Ruge, Adaptive smoothed aggregation (αSA) multigrid, SIAM Rev., (47) 2005, pp.
317–346.

[5] M. Brezina and J. Garcia and T. Manteuffel and S. McCormick and J. Ruge and L.
Tang , Parallel adaptive mesh refinement for first-order system least squares, J. Num. Lin.
Alg. Appl., (19) 2012, pp. 343–366.

[6] A. J. Cleary and R. D. Falgout and V. E. Henson and J. E. Jones and T. A. Manteuffel
and S. F. McCormick and G. N. Miranda and J. W. Ruge, Robustness and scalability
of algebraic multigrid, SIAM J. Sci. Comput., 21 (2000), pp. 1886–1908.

[7] H. De Sterck and T. Manteuffel and S. McCormick and J. Nolting and J. Ruge and L.
Tang , Efficiency-based h- and hp-refinement strategies for finite element methods, J. Num.
Lin. Alg. Appl., (15) 2008, pp. 249–271.

[8] H. De Sterck and T. Manteuffel and S. McCormick and L. Olsen, Least-squares finite
element methods and algebraic multigrid solvers for linear hyperbolic PDEs, SIAM J. Sci.
Comp., (26) 2004, pp. 31-54.

[9] H. De Sterck and T. Manteuffel and S. McCormick and L. Olsen, Numerical Conservation
Properties of H(div)-Conforming Least-Squares Finite Element Methods for the Burgers
Equation, SIAM J. Sci. Comp., (26) 2005, pp. 1573-1597.

[10] R. D. Falgout and P. S. Vassilevski, On Generalizing the Algebraic Multigrid Framework,
SIAM J. Numer. Anal., (42) 2004, pp. 1669–1693.

[11] J. Hansen and J. Peterson and J. Morel and J. Ragusa and Y. Wang, A new least-
squares transport equation compatible with voids , Proc. 2013 Int. Conf. on Math. and
Comp. Methods Applied to Nuclear Science and Engineering, 2013.

[12] E. W. Larsen, Diffusion theory as an asymptotic limit of transport theory for nearly critical
systems with small mean free path, Ann. Nuclear Energy, (7) 1980, pp. 249-255.

[13] K.D. Lathrop, A comparison of angular difference schemes for one-dimensional spherical



20 LSFEs for Neutron Transport in Spherical Geometry

geometry sn equations, Nucl. Sci. Eng., 134, (2000), pp. 239-264.
[14] K. D. Lathrop , Ray effects in discrete ordinate equations, Nucl. Sci. Eng., (32) 1968, pp.

357-369.
[15] K. D. Lathrop , Remedies for ray effects, Nucl. Sci. Eng., (45) 1971, pp. 255-268.
[16] E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, John Wiley,

New York, 1984.
[17] E. Machorro, Discontinuous Galerkin finite element method applied to the 1-D spherical neu-

tron transport equation, J. Comp. Phys., 223(1), (2007), pp. 67-81.
[18] T. Manteuffel, and K. Ressel, Least-Squares Finite-Element Solution of the Neutron Trans-

port Equation in Diffusive Regimes, SIAM J. Numer. Anal., 35(2), (1998), pp. 806-835.
[19] M. M. Mathis and N. M. Amato and M. L. Adams, A general performance model for par-

allel sweeps on orthogonal grids for particle transport calculations, Proc. ACM Int. Conf.
Supercomputing (ICS), Santa Fe, NM, 1980, pp. 255-263.

[20] L. N. Olson and J. B. Schroder and R. S. Tuminaro, A New Perspective on Strength
Measures in Algebraic Multigrid, Numer. Linear Algebra Appl., 17 (2010), pp. 713–733.

[21] L. N. Olson and J. B. Schroder and R. S. Tuminaro, A general interpolation strategy
for algebraic multigrid using energy-minimization, SIAM J. Sci. Comput., (33) 2011, pp.
966–991.

[22] J. B. Schroder, Smoothed Aggregation Solvers for Anisotropic Diffusion, Numer. Linear Al-
gebra Appl., 19 (2012), pp. 296–312.

[23] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying
boundary conditions, Math. Comp., 54 (1990), pp. 483493.

[24] R. Tuminaro and C. Tong, Parallel smoothed aggregation multigrid: aggregation strategies on
massively parallel machines, Supercomputing 2000 Proc., 2000.
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